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Abstract

A key challenge for controllable image editing is that vi-
sual attributes with semantic meanings are not always
independent, resulting in spurious correlations in model
training. However, most existing methods ignore such is-
sues, leading to biased causal visual representation learn-
ing and unintended changes to unrelated regions or at-
tributes in the edited images. To bridge this gap, we pro-
pose a diffusion-based causal visual representation learn-
ing framework called CIDiffuser to capture causal repre-
sentations of visual attributes based on structural causal
models to address the spurious correlation. Specifically, we
first decompose the image representation into a high-level
semantic representation for core attributes of the image and
a low-level stochastic representation for other random or
less structured aspects, with the former extracted by a se-
mantic encoder and the latter derived via a stochastic en-
coder. We then introduce a causal effect learning module to
capture the direct causal effect, that is, the difference of po-
tential outcomes before and after intervening on the visual
attributes. In addition, a diffusion-based learning strategy
is designed to optimize the representation learning process.
Empirical evaluations on two benchmark datasets demon-
strate that our approach significantly outperforms state-of-
the-art methods, enabling highly controllable image editing
by modifying learned visual representations.

1. Introduction

Controllable image editing aims to modify specific target
attributes while keeping unrelated attributes unchanged [2].
This capability is crucial for a wide range of applications,
from personalized content generation to interactive design
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tools [10, 12, 19, 29, 38], where fine-grained control over
visual elements is necessary. Fortunately, the maturity and
prevalence of deep generative models such as generative ad-
versarial networks (GANSs) [6] and variational autoencoders
(VAEs) [7, 37] diffusion model [4, 8], facilitate the editing
of realistic images provided in various source inputs.

Existing methods can generally be divided into two cat-
egories: condition-based image editing [10, 12, 20, 34] and
representation learning-based methods [1, 5, 26, 27, 30].
The core idea of the former is to guide the editing process
with the help of additional conditional information, such as
text descriptions, masks, or reference images. However, ac-
quiring such additional information is challenging and ex-
pensive. In contrast, representation learning-based methods
aim to learn the latent representation of images for attribute
editing, providing more precise control while reducing the
reliance on external information. However, a key challenge
in image editing is modification of one attribute will inten-
tionally impact other unrelated attributes. This difficulty
stems from the complex dependencies between the various
attributes within an image.

Unfortunately, many existing methods are unable to
solve the above challenge. For example, in the CelebA
dataset, the presence of older faces is usually associated
with the presence of glasses, while younger faces are as-
sociated with the absence of glasses in the dataset, existing
methods may mistakenly link wearing glasses with age. As
illustrated in Fig. 1(a.2), current methods (e.g., [24]) may
inadvertently add or remove glasses when editing age, as
shown by the red box, even though there is no causal rela-
tionship between them.

Causal inference is an effective tool to address these is-
sues, which is widely-used in many fields such as econ-
omy, healthcare, and e-commerce [9, 18, 35, 36]. CFI-VAE
[19] introduces a causal intervention approach within the
VAE framework to learn causal effects between latent rep-
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Figure 1. (a) Example of Spurious correlations in the CelebA
dataset: Editing “age” may incorrectly influence “glasses”. (b)
Calculation of the DCE. By comparing the difference between
the factual observation scenario and the counterfactual interven-
tion scenario, the influence of confounders U;; can be effectively
excluded, accurately quantifying the DCE of y; on y;.

resentations. This model aims to improve learned represen-
tation quality by learning direct causal effects (DCE) via
causal intervention. However, the representations learned
by CFI-VAE lack interpretability, which means that there
is no guarantee that the learned representations correspond
to specific attributes in the image. Moreover, due to the
inherent limitations of the VAE framework, CFI-VAE may
generate incomplete latent representations because its opti-
mization process involves a trade-off between reconstruc-
tion error and KL divergence. Such trade-off hinders the
adequate capture of the causal representation, resulting in
the editing process is still affected by spurious correlations.

To bridge this gap, we propose CIDiffuser, a diffusion-
based framework capturing causal representations of visual
attributes by adopting causal interventions on them. First,
to fully capture image representations, we decompose the
visual representation into two key components: high-level
semantic representations, which handle data-generating fac-
tors and their causal relationships, and low-level stochastic
representations, which capture the random or less structured
aspects of the image. Second, inspired by previous causal
effect estimation methods [31, 33, 40, 41], a structural
causal model (SCM) is introduced to estimate the causal
effects among these visual representations by incorporating
unmeasured variables, specifically confounding biases that

lead to spurious correlations, as shown in Fig. 1(a). Partic-
ularly, a causal effect learning module is introduced to re-
move the confounding biases by quantifying the differences
measured based on DCE between the predicted outcomes
before and after intervening on the attribute, as illustrated
in Fig. 1(b). Third, we employ a diffusion model to decode
both the high-level representations and low-level stochas-
tic representations, effectively balancing the completeness
of causal representations and the fidelity of the generated
images. In addition, a learning strategy is devised by com-
bining the evidence lower bound with a causal prior regu-
larization term, a causal effect loss, and a supervised loss to
optimize the representation and also to promote the align-
ment of learned representations with the image generating
factors (i.e., visual attributes). Finally, extensive experi-
ments on two public datasets show that our method outper-
forms existing state-of-the-art methods in capturing visual
representations and controllable image editing.

2. Problem Formulation

Given a dataset D that consists of N images, and each im-
age z in D is annotated with M labeled attributes, rep-
resented as Y, = {Yz.1,¥z,2, .., Yo, M}, such as gender,
age in Fig 2. Notice that each attribute in Y, can be ei-
ther multi-values or continuous values. The goal of our
model is to capture a set of causal representations Z, =
{#2,1, 22,2, ..., zz, M } for each label, with each causal rep-
resentation in Z, corresponding to an intervenable visual
attribute in Y,.. To brief the presentation, we ignore the in-
stance subscript. To achieve this goal, we learn a causal
effect matrix AM*M for each image with 4;; € A quan-
tifying the DCE of variable z; on z;, i.e., the strength
z; — zj. Note that A;; = 0 indicates the absence of a
direct causal relationship from z; to z; and each entry A;;
represents the causal effect, which is not necessary to be bi-
nary. In addition, we adopt the background knowledge to
pre-specify which entry is zero. Formally, we employ SCM
M =< g,2z, F, P. > to encapsulate the causal relation-
ships among the latent representations of the image dataset
D. Here ¢ = {e1,¢€9,...,ep} denotes a set of exogenous
variables for the visual representations z, which is extracted
from the semantic encoder E(-) [27] and P. presents its
corresponding probability distribution that can be obtained
via a semantic encoder. By leveraging the learned causal ef-
fect matrix A, each causal representation of a specific visual
attribute can be calculated through a corresponding SCM
function z; = fi(Pa(z;), A; pa(z,),€:), Where Pa(z;) de-
notes its parent set (e.g., age, gender), and f; € F (ie., a
set of functions F' = {f1, fa, ..., fm}). Unfortunately, the
estimation of A can be biased due to confounding bias and
spurious correlations, as illustrated in Fig. 1(a).

To address this issue, we propose a causal intervention-
based learning strategy to mitigate these biases. Formally,
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Figure 2. The framework of our CIDiffuser. The framework first encodes the input image xo to high-level semantic representations by
a semantic encoder; Then, the direct causal effect learning module processes the semantic representations and labels to infer the causal
effect matrix A; Next, the learned A is incorporated with the structural causal model (SCM) to transform these semantic representations
into high-quality causal representations. These are then fused with the low-level stochastic representation derived by a stochastic encoder,
and fed into the diffusion model, which undergoes a backward diffusion process to gradually guide the image transformations, ultimately

reconstructing the input image.

causal intervention is defined as the do operation, which en-
tails assigning a value to an attribute (e.g., age) directly.
Then, we can calculate the DCE from attribute y; to y; by
DCE(y; — y;) = Ely;lyi, Usj] — Ely;|do(y:), Usj], as
shown in fig 1(c), where ¥; is the outcome value after in-
tervention, U;; denotes the confounding variables that af-
fect both attributes, such as elderly individuals frequently
wear glasses, causing both y; (age) and y; (glasses) to be
affected by the underlying image distribution (confounding
variables Uj ;). Note that we keep the U;; the same through
the DCE calculation to extract the direct effect of y; to y;.
In the facial image editing example, y; = 0 means that the
person in the image is young (0) in the dataset. y; denotes
the new value of y; after intervention (e.g., setting y; = 1
indicates the change of the age to old (1)). The difference
between these two terms isolates the DCE of y; on y; from
the effects of confounders. In this way, our method is more
capable of learning high-quality causal representations for
controllable image editing.

3. Methodology

Fig. 2 illustrates the whole framework of our proposed CID-
iffuser. Given an image x( and its corresponding set of M
labels Yy = {yx.1,Yz,2; ---» Y, M - We first adopt a semantic
encoder and a stochastic encoder to extract the high-level
semantic representations € and low-level stochastic repre-
sentations xr, respectively. The semantic representations
capture core attributes and patterns, while the stochastic
representations encode random or less structured aspects of
the image. Next, we define a SCM (a.k.a., causal graph) to
represent the causal representation Zq,,sq; as a function of
learned semantic representation €semantic. 10 disentangle
direct causal effects from confounding biases, we introduce
a direct causal effect learning module that applies causal in-
tervention and a causal effect loss. The causal effect matrix
is then integrated into the SCM to transform €y antic iNtO
the causal representations Z.q,sq;- Finally, the causal and
stochastic representations are fused and fed into the causal
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decoder for image reconstruction. During the testing phase,
we achieve targeted attribute editing by modifying the high-
level semantic representation according to the attribute.

3.1. Semantic Encoding via Causal Modeling

To achieve a causal latent representation, we first design a
semantic encoder E(:) : o — Esemantic 10 Map an in-
put image xg to a latent representation, where €gemantic =
{&, €other } consist of two parts: the representations of the
image generating factors (i.e., visual attributes of interest
to user), and the representations of the other axillary factors
that are necessary for image generation. We then convert the
latent representation ¢ (also known as exogenous variables)
to causal representations Z,,, which capture the causal rela-
tionships between these variables via nonlinear F' in SCM.
Then, we merge Z, with €,¢p, to form the complete causal
representations z.qqsq;- In this formulation, each noise term
€; € ¢ is the exogenous noise term for the representation z;
of the attribute in the SCM. i.e., z; = f((I— AT)"'h(g;)),
where I is the M x M identity matrix, f(-) and h(-) are
transformation nonlinear functions. Note that f(-) is invert-
ible, so f~*(z;) = AT f~1(2;) + h(e;), which means that
the factors z; can be intervened in this way. Following [27],
the piece-wise linear functions are used as non-linear f(-),
which is defined as

N,
f(zi) = [wolizi + Y _lwii(zi — a)X(zi = ar) + [b];,
t=1

where wy,t = 0,1, ..., N, and b are learnable weights and
biases parameters, ay, > ... > a; > ag are the points of
division, I(-) denotes the indicator function.

Note that during the inference phase, controlled image
editing can be achieved by intervening on specific dimen-
sions (e.g., age) of the latent representations €. Specifically,
we first apply intervention operations to the latent repre-
sentations € and input the intervened representations into a
nonlinear SCM to obtain causal representations z. These
causal representations are then fused with stochastic repre-
sentations x; that are obtained by the diffusion process. The
fused representations are then fed into a denoising diffusion
implicit model (DDIM) decoder for denoising, thereby en-
abling controlled image editing.

3.2. Direct Causal Effect Learning Module

To address the confounding biases prevalent in the dataset,
we design a direct causal effect learning (DCEL) module.
This module consists of two components: a causal interven-
tion strategy and a causal effect loss function. Specifically,
we first introduce the confounding bias, and reconstruct the
causal graph as illustrated in Fig. 1(a). The causal graph
consists of four type nodes: confounding biases U;;, causal
attribute y;, and outcome attribute y;. Link y; — y; implies

that there is a direct dependency between y; and y;. Link
yi < U;; — y; means that confounding biases in dataset
x¢ affect causal attribute y; and outcome attribute y;.
Therefore, we follow the paradigm of [19, 23] and ex-
ploit the causal intervention to separate the direct causal ef-
fect from the effect of confounding biases. Without loss of
generality, we use a binary scenario as an example, and the
proposed method can be easily extended to the continual
case. Specifically, inspired by [11, 25] the causal effect can
be estimated by comparing the differences of outcomes un-
der two scenarios: the counterfactual scenario, where causal
attribute y; is intervened by set to a fixed value g;, where
the influence of biases are cut off, and the factual scenario,
where the causal attribute y; remains as observed in the
dataset (i.e., y;). For those A;; # 0, the casual effects from
variable y; to variable y;, can be determined using the DCE

formula: A;; = DCE(y; — y;), where

DCE(y; — y;) =Y, (w0, yk) — Yy, (w0, yr), k # i, .
ey
Here, Y; (w0, ys) and ij (w0, yx) represents predicted YV
for the class y; with the original image x¢ and other at-
tribute ¥ as input, and with the intervened value of y; and
y; for class y;, respectively. Specifically, we train a classi-
fier C;; by the causal effect loss Lg,

Lq = BCE[Ci;((yi»Yk), T0), yj]

— ABCEI[C;; (i, Yk), x0), Y5l k # J. @
Here, ¥; is the outcome value after intervention, ) is a trade-
off hyperparameter and the BC'E is binary cross-entropy
loss. Notably, for multi-value attributes, the loss function is
adapted to cross-entropy loss. The first term ensures predic-
tions are as close as possible to class y; when the inputs of
the classifier are causal attribute y;, image z(, and the image
attributes yy, k # 1, j. In other words, the first term ensures
the prediction ability for y; to y;. However, only minimiz-
ing the first BCE loss cannot ensure A;; # 0, because the
model may use only y;, and xg to predict y;. Thus, we mi-
nus the second BCE loss, which changes y; to 4; = 1 — ;.
This term means that if we change the value of y;, the pre-
diction result will be changed, which ensures the Aij 1S not
to be zero. For the continue case, we set the §j; to zero.
When removing the negative effect of confounding bias,
the learned causal effects are also influenced by class imbal-
ance. Therefore, we improve the causal effect loss by em-
ploying influence function [3, 22] for measuring the training
sample’s influence on the classifier,

IBii(((yi yk), xo)sw) = [|Cii (415 yx ), wo), w) =51 [|A]]1,

3)
where || - ||; represent the 1-norm and w = [wy, ..., was| "
is the weight matrix of the fully connected (FC) layer,
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h = [h1,...,hr]T is the input of the FC layer. The mean-
ing of this equation is the derivative of this FC layer through
backward propagation. Then the causal effect loss Ei{”b can
be convert to

BCE[Cij((yi7yk)7x0)vyj]
IBi;(((yi,yx), 0); w) 4)
- )‘BCE[OZJ((gu yk)7x0)7yj]7 k 7é ]
1

Here class-wise re-weighting term i, = ¢n; ' /SM_ ni,
is added to mitigate the dataset biases arising from the over-
all imbalanced distribution through the slow-down of the
majority class loss minimization. ny is the number of sam-
ples in the k-th class in the training dataset to measure the
imbalance degree, and v is the hyper-parameter for an ad-
justment. Note that, since the influence function is derived
from the loss minimization context [22], we initially use
Eq. (2) for model training. After convergence, we switch to
Eq. (4) to mitigate the impact of dataset biases that cause
deviations in causal effect estimation.

L =,

3.3. Causal Representations-based Diffusion Model

Now, we can capture the causal representation via the
learned causal effect matrix that captures the causal gen-
eration mechanism of images. Further, we utilize the causal
representation-based diffusion model as stochastic encoder
FEs to encode the input image x into a stochastic represen-
tation x; for generating fine image details (e.g., texture).
This is achieved by zy11 = /@ti120(2e,t, Zecausal) +
V 1-— O_‘t+16(7‘ (l’t, t, anusal)’ where QA:O (xtv ta anusal) -
\/T(act — V1 — aep(t, t, Zeausal)) s an estimate of xg

Qt
from xz;. Here, a; = H‘;:lat is the cumulative product of
the schedule parameters o [24, 321, €g(xt, t, Zcqusal ) refers
to the noise prediction network, which is implemented us-
ing U-Net architecture parameterized by 6.

Next, to fuse the learned causal representations zqqysal
with stochastic representations x;, we employ the adaptive
group normalization layers (AdaGN) [4]. Specifically, the
fusion is performed as follows: AdaGN(h,t, Zcqusal) =
(1 + Zgausal)((l + tS)GN(h) + tb) + z[éausal' Here’
(25 wsals Zounsat]l = SiLU(Linear(zequsat)), and [t5, %] =
SiLU(Linear(t)). These fused representations are then fed
into a causal representations-based diffusion decoder D for
image reconstruction. Following [24, 32], our decoder is a
conditional DDIM that model pg(2+—1|%¢, Zequsar) to match
the inference distribution

q(xi_1|my, 0) = N(Va—120 + V1 — p1 — 02 - z‘£07031)
(5)

with the following generative process:

Po (wtfl ‘xt: anusal) = p(xT)ngzlpG(mtfl |wt7 anusal); (6)
Specifically, pg in Eq. (6) is defined as

1—ay

p@(xt71|xt7 anusal) = \/%(xt - mfﬁ(mhtv Zuausal))- (7)

3.4. Learning Strategy

To facilitate the learning of semantic factors and ensure
identifiability guarantees [13], we design a novel learning
strategy for CIDiffuser based on variational inference. First,
we follow [32] to develop a variational lower bound on the
marginal log-likelihood of the data by applying variational
inference twice,

10gp0 (xO) = Eq(a?1|1:o) [logp9 (.’170|£E1, anusal)}
T
- Z Eq(xt|x0) [KL(Q(xt—l ‘xta .To) ‘ |p¢9 (It—l |xt7 anusal))]

t=2
- KL(th(zcausal|z0)||p(zcausal)) — KL(q(xr|x0)||p(2T))
= Laify,

®)

where Lg; 7y represents the evidence lower bound for our
CIDiffuser, gy(2cqusat|To) is an approximate variational
posterior, K L denotes the Kullback—Leibler divergence.

Then, to guarantee alignment between the underlying
factors and the learned latent representations, we design
a supervised loss by introducing supervision information
(i.e., labels y),

‘Cs - Ewo,y[rs(q¢(z|x0>7y)]7 (9)

where 74 adopts the BCE loss for binary labels and the mean
squared error loss for continuous-valued labels. Addition-
ally, the causal effect loss Ly is joint with Lg;¢ and L, to
capture the causal representation of images, the final loss
function can be expressed as

L(E,Eq,D,S,C) = Laiys + KLs + pLim™,  (10)

where parameters x, p serve as weighting factors that are
employed to balance the causal effect loss term with the
supervised loss term.

4. Experiments

In this section, we conduct extensive experiments on two
public datasets to evaluate the effectiveness of our method.

4.1. Experimental setting

Datasets. Evaluations are performed on two publicly
available datasets: a synthetic dataset, Pendulum [37], and
a real-world dataset, CelebA [21].

CelebA is a real-world dataset of facial images with 40
attributes.  Following [19, 27], three datasets are con-
structed by selecting different subsets of image attributes,
called CelebA-smile, CelebA-age, CelebA-gender, re-
spectively, where CelebA-smile consists of six attributes:
smile, gender, narrow eye, mouth open, cheekbone, and
chubby, with causal relationship defined as smile —
{narrow eye, mouth open, cheekbone, andchubby}, and

23488



Table 1. Performance comparison on latent representations quality
across datasets. Best results are bold, and sub-optimal results are
underlined. Note that part of the results are quoted from [15].

Datasets CelebA-smile CelebA-age Pendulum
Metric MIC TIC MIC TIC MIC TIC
Beta-VAE 0.338 0.337 0.156 0.158 0.266 0.147
Conditional VAE 0.788 0.661 0.898 0.787 0.938 0.805
DiffAE 0.448 0.401 0.240 0.562 0.810 0.699
Infodiff 0.413 0.384 0.594 0.556 0.742 0.719
CausalVAE 0.837 0.716 0.926 0.834 0.951 0.823
DEAR 0.526 0.530 0.347 0.343 0.329 0.306
SCM-VAE 0.751 0.689 0.944 0.889 0.962 0.891
CFI-VAE 0.664 0.632 0.461 0.539 0.921 0.981
CausalDiffAE - - 0911 0.892

CIDiffuser 0.890 0.869 0.944 0.903 0.981 0.865

gender — narrow eye. CelebA-age contains six attributes:
age, gender, receding hairline, makeup, chubby, and bag
under the eye, with causal relationships given by age —
{receding hairline, makeup, chubby, bag under the eye,

and gender — {receding hairline, makeup}. CelebA-
gender focuses on five attributes:  bald, gender,
mustache, no beard, and age, with causal rela-
tionship age —  {bald,mustache,no beard}, and
gender — {bald, mustache,no beard}. For these three
datasets, the training set consists of 162,080 samples,
while the testing set comprises 40,519 samples. Pendu-
lum is a synthetic dataset with 4 attributes: pendulum
angle, light angle, shadow length, shadow position,
where {pendulum angle, light angle} — shadow length,
{pendulum angle, light angle} — shadow position. For
this dataset, the training set includes 5,000 samples, while
the testing set contains 3,000 samples. These two datasets
contain unique challenges: CelebA exhibits significant
confounding biases, like a tendency for female samples to
be labeled as young (103,287 out of 156,734 samples), and
male samples as non-young (30,987 out of 45,865 samples),
as well as an imbalance between chubby and non-chubby
samples (11,663 vs. 190,936). Pendulum’s confounding
bias stems from the original state of the physical concept.
Evaluation Metrics.  Following the previous work
[16, 32, 37], We adopt two groups of metrics to evaluate the
performance of CIDiffuser. On the one hand, we employ
total AUROC difference (TAD), the number of attributes
successfully captured (Attr), maximal information coef-
ficient (MIC), and total information coefficient (TIC) to
evaluate the disentanglement capability of learned causal
representations. A higher value for these metrics indicates
better disentanglement performance. On the other hand,
we use Fréchet inception distance (FID), inception score
(IS), and kernel inception distance (KID) to evaluate the
generated images’ diversity and fidelity.

4.2. Baselines

To verify the effectiveness of CIDiffuser, we compare it
with the state-of-the-art methods. Generally, we adopt the
baselines from two categories. Conditional VAE [28], Beta-
VAE [7], DiffAE [24], PDAE [39], Infodiff [32], and DBAE
[14] belong to traditional disentanglement representation
learning (TRL) methods. CausalVAE [37], DEAR [27],
SCM-VAE [15], CFI-VAE [19], and CausalDiffAE [17] are
causal visual representation learning (CRL) methods.

4.3. Implementation Details

We implement CIDiffuser using Pytorch and the code will
be released on GitHub. Following [37], the real-world
datasets, CelebA are scaled to 128 x 128 resolution, while
the synthetic datasets, Pendulum, are adjusted to 96 X
96 resolution. More specifically, we empirically take the
ADAM as the optimizer, and the learning rate is set to le—4.
We set the batch size as 16 for model training due to com-
putational resource constraints. Unless otherwise stated, the
coefficients x and  are set to 0.1 and 0.5, respectively. All
experiments are run on five NVIDIA GeForce RTX 4090
GPUs. The training epochs vary from dataset to dataset,
with 1000 epochs for the Pendulum dataset, and 50 epochs
for the CelebA-smile/age/gender datasets.

4.4. Performance Comparison

We report the overall performance comparison among the
methods in Table | and Table 2. The visualization results
are shown in Fig. 3, Fig. 4, and Fig. 5 (left). From these
experimental results, we have the following observations.
First, CRL methods outperform TRL methods in disen-
tanglement, and CausalVAE [37] achieves the most com-
petitive performance among all the baseline methods. This
is because CRL methods account for dependencies between
latent factors, while TRL methods assume independence,
which is often unrealistic in real-world data. Second, the
TRL method significantly outperforms the existing CRL
method in image generation quality. DiffAE [24] exhibits
the best performance among all baseline methods. This is
because DiffAE [24] leverages the diffusion model, which
is well-suited for high-quality image generation. CRL
methods, typically based on VAEs or GANs, face chal-
lenges like mode collapse or lack of generative diversity.
Third, while DiffAE surpasses CIDiffuser in quantitative
metrics, CIDiffuser generates images that better follow the
image generation mechanism, as shown in Fig. 3. That
is to say, interventions on specific dimensions of the la-
tent representation (e.g., age, gender) should solely affect
the outcome attributes (e.g., beard, chubby), while leav-
ing other attributes unchanged. Conversely, modifications
to the outcome attributes (e.g., mouth open) should not in-
fluence the attributes (e.g., smile, gender). Similar results
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Table 2. Performance comparison on CelebA datasets in terms of image quality. Best in bold and sub-optimal underlined.

TRL

CRL Our

Methods Beta-VAE DiffAE Infodiff CausalGAN CausalVAE DEAR ICM-VAE CFI-VAE ClIDiffuser

FID | 169.7 516 100.7  144.1
ISt 1563 3.669 1.931 1.831
KID,  0.092

0.041 0.061 0.056

284.3 97.2 263.3 275.7 56.7
1.366 2.014 1.485 1.663
0.084 0.044  0.065 0.063 0.027

3.053

DEAR Infodiff DiffAE

Our

Gendr Age Beard

Chuby

i B: Beard A: Age

i C: Chubby S: Smile
i N: Narrow eye G: Gender '
i M: Mouth open 1

Mouth pen Narrow eye Causal Graph

Figure 3. Comparison results on the CelebA dataset. The red boxes highlight phenomena observed in certain methods that are influenced

by spurious correlations.

can be observed in the Pendulum dataset (Fig. 4). How-
ever, due to confounding biases, images generated by Dif-
fAE [24] and Infodiff [32] often do not conform to the data
generation mechanism, leading to both reverse causation is-
sues, where the results inappropriately influence the causes,
and spurious correlations, as seen in the unnecessary addi-
tion of glasses when editing gender. Overall, CIDiffuser
not only excels in representation learning but also produces
high-quality images, demonstrating its effectiveness.

4.5. Ablation Study

Effectiveness of Causal Modeling. To demonstrate the ef-
fectiveness of causal modeling (CM), we conducted exper-
iments by removing it from the CIDiffuser. Table 3 demon-
strates that while the CIDiffuser without the CM module
performs better on the quality metrics (e.g., LQ) of latent
representations, it falls short on the number of generating
factors identified (i.e., Attr). This discrepancy can be at-
tributed to the CIDiffuser model with the CM module learn-
ing a richer representation by integrating the causal struc-
ture of the data into the learning process. This integration
imposes clear constraints on the latent space, enabling the
model to more effectively capture causally relevant gener-
ative factors. Besides, the fidelity of images generated by
CIDiffuser with the CM module is significantly higher than
that of the model without the CM module. This is because
the CM module ensures that the image generation process
aligns with the causal mechanisms underlying physical im-
age formation, leading to the edited image that more accu-
rately reproduces the statistical properties and visual details
of the source images.

Effectiveness of DCEL. We evaluate the performance of
CIDiffuser under three different variations of the DCEL
module, focusing on the presence or absence of confound-
ing biases. Three variants are considered: one that pre-
serves the confounding biases and class imbalance issue
(i.e., without L, (Eq. 2), one that suffers from the issue
of class imbalance (with Eq. 2), and one that eliminates the
biases (i.e., CIDiffuser with Eq. 4). Experimental results
(Table 3, rows 5-7) show that while all variants capture the
same number of image-generating factors, the presence of
biases degrades performance in metrics like LQ, and TAD.
This reveals that the confounding biases and class imbal-
ance issue led the model to capture representations closely
related to the biases rather than the essential factors rele-
vant to the image generation process. The introduction of
Ly (Eq. 2) eliminates the confounding biases, resulting in
improvements in TAD and LQ, but remains slightly below
the performance of the CIDiffuser with all bias removed.
This indicates that while £, mitigates the effects of false co-
occurring attributes caused by confounding bias, the causal
effects might still be over- or underestimated due to class
imbalance issues. Further, the Efimb (Eq. 4) effectively re-
fines the causal effect matrix, leading to more high-quality
representations. This is evidenced by higher TAD and LQ
scores, indicating successful mitigation of confounding bi-
ases and class imbalance issues. Additionally, the improve-
ments are further supported by lower FID and KID scores,
reflecting enhanced image visual quality.

Effectiveness of Supervised Loss. The impact of super-
vised loss on model performance is presented in Tab. 3.
The results clearly indicate that the removal of supervised
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Figure 4. Performance comparison on the Pendulum dataset. Rows 1 - 4 show the results of editing the pendulum angle, light position,
shadow length, and shadow position, respectively. Existing methods either compromise the quality of the generated images, as indicated

by the

Table 3. Ablation studies on CelebA-smile. LQ is measured as
AUROC for logistic regression classifiers trained on z.

Model LQ TAD Atr FID IS KID
w/o CM 0.999 0351 4 76.7 3.036 0.047
wlo L:&L4 0.432 0.037 2 133.9 2.944 0.153
w/o L 0.844 0.039 2 89.5 2.142 0.108
w/o L4 0.882 0459 6 57.4 3.036 0.023
w Ly 0988 0461 6 56.7 3.033 0.027
CIDiffuser 0.994 0481 6 56.7 3.053 0.025

loss L leads to a significant degradation in performance,
affecting both the quality of representation learning and the
fidelity and diversity of generated images. This decline is
primarily due to the absence of supervised loss, which hin-
ders the alignment between the learned representations and
the model’s generative factors (e.g., visual attributes such
as smiles, gender, and makeup). Consequently, the learned
representations lack clear semantic meaning, undermining
the effectiveness of disentangled representation learning.
As a result, even with the incorporation of causal model-
ing, the generation quality remains compromised.

Impact of Causal Representations Dimension N. We in-
vestigate how varying the dimensions of causal represen-
tations affects the quality of learned representations. The
experimental results, depicted in Fig. 5 (right), show a clear
correlation between representation dimension and the en-
coder’s ability to extract semantic features. As the represen-
tation dimension increases, the encoder’s ability to capture
the semantic features of the image is enhanced, resulting in
higher fidelity during image editing. However, beyond an
optimal value (N > 64), further increases in dimensionality
degrade representation quality. This degradation occurs be-
cause higher dimensionality can introduce unwanted noise,
hindering the model’s ability to learn useful information.
Therefore, we select 64 as the final dimension.
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, or when editing the result attributes, it may still affect the attributes, as seen in the blue circles.
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Figure 5. Performance comparison. Left: Results of representa-
tion quality of different methods on the CelebA dataset. Right:
Analysis of different causal representation dimensions.

5. Conclusions

In this paper, we propose a novel causal visual represen-
tation learning framework, CIDiffuser, designed to learn
high-quality causal representations for controllable image
editing. Our framework incorporates a causal modeling
module that ensures learned representations faithfully cap-
ture the underlying causal mechanisms of image generation.
Additionally, we present a direct causal effect learning mod-
ule and a novel learning strategy that effectively removes
confounding biases in the dataset, promoting the capture
of interpretable causal representations that are aligned with
the image-generating factors (i.e., visual attributes). Exten-
sive experiments on both synthetic and real-world datasets
demonstrate the enhanced performance of our method over
existing methods in representation quality and controllable
image editing capabilities.
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